Fall 2016
$\begin{aligned} \vec{r}_{\mathrm{cm}} & =\frac{\sum \vec{r}_{i} m_{i}}{\sum m_{i}} \\ \vec{r}_{\mathrm{cm}} & =\frac{\int \vec{r} d m}{\int d m} \\ I & =\sum m_{i} r_{i}^{2} \\ I & =\int r^{2} d m \\ I & =I_{\mathrm{cm}}+M d^{2} \\ \vec{L} & =\vec{r} \times \vec{p} \\ \vec{L} & =I \vec{\omega} \\ x & =A \cos (\omega t+ \\ \vec{a}_{\mathrm{x}} & =-\omega^{2} \vec{x} \\ \omega & =\sqrt{k / m} \\ \omega & =2 \pi f=\frac{2 \pi}{T}\end{aligned}$

$$
\begin{array}{rlrl}
& \text { Final Exam Formulæ \& Constants } \\
& & \\
& & \\
\sum \vec{F} & =m \vec{a}=\frac{d \vec{p}}{d t} & W & =\int \vec{F} \cdot d \vec{s} \\
\sum \vec{F}_{\mathrm{ext}} & =M \vec{a}_{\mathrm{cm}}=\frac{d \vec{P}}{d t} & W_{\mathrm{ext}} & =\Delta K+\Delta U+\Delta E_{\mathrm{th}} \\
\sum \vec{\tau}_{\mathrm{ext}} & =I \vec{\alpha}=\frac{d \vec{L}}{d t} & K & =\frac{1}{2} m v^{2} \\
f_{\mathrm{s}, \text { max }} & =\mu_{\mathrm{s}} n & K & =\frac{1}{2} I \omega^{2} \\
f_{\mathrm{k}} & =\mu_{\mathrm{k}} n & U_{\mathrm{g}} & =m g y \\
a_{\mathrm{r}} & =\frac{v^{2}}{r} & U_{\mathrm{s}} & =\frac{1}{2} k(\Delta s)^{2} \\
\vec{w} & =m \vec{g} & U_{\mathrm{G}} & =-\frac{G m_{1} m_{2}}{r} \\
\left|\overrightarrow{F_{\mathrm{G}}}\right| & =\frac{G m_{1} m_{2}}{|\vec{r}|^{2}} & P & =\frac{d E_{\mathrm{sys}}}{d t} \\
\vec{\tau} & =\vec{r} \times \vec{F} & P & =\vec{F} \cdot \vec{v} \\
& \vec{J} & =\int \vec{F} d t=\Delta \vec{p} \\
& \vec{p} & =m \vec{v}
\end{array}
$$

PHYS 2211 A \& B

$$
\begin{aligned}
\vec{v} & =\frac{d \vec{r}}{d t} \\
\vec{\omega} & =\frac{\overrightarrow{d \theta}}{d t} \\
\vec{a} & =\frac{d \vec{v}}{d t} \\
\vec{\alpha} & =\frac{d \vec{\omega}}{d t} \\
v_{\mathrm{sf}} & =v_{\mathrm{si}}+a_{\mathrm{s}} \Delta t \\
\omega_{\mathrm{f}} & =\omega_{\mathrm{i}}+\alpha \Delta t \\
s_{\mathrm{f}} & =s_{\mathrm{i}}+v_{\mathrm{si}} \Delta t+\frac{1}{2} a_{\mathrm{s}}(\Delta t)^{2} \\
\theta_{\mathrm{f}} & =\theta_{\mathrm{i}}+\omega_{\mathrm{si}} \Delta t+\frac{1}{2} \alpha(\Delta t)^{2} \\
s & =r \theta \\
v & =r \omega
\end{aligned}
$$

Physical Constants:

Recitation Sections

	Clough 123	Clough 125	Clough 127	Clough 131	Clough 325
Wednesday					
$1: 05-1: 55 \mathrm{pm}$					B01 Roberts, Kelli
$2: 05-2: 55 \mathrm{pm}$		A01 Roberts, Kelli			
$3: 05-3: 55 \mathrm{pm}$				A06/B05 Gaire, Vinod	
$4: 05-4: 55 \mathrm{pm}$	A02 Tregoning, Brett	A07 Whitley, Lee	B08 Biewer, John	B02 Gaire, Vinod	
$5: 05-5: 55 \mathrm{pm}$				A05 Gaire, Vinod	B06 Ibnamasud, Shadman
THURSDAY					
$1: 05-1: 55 \mathrm{pm}$					
$2: 05-2: 55 \mathrm{pm}$					A03 Gaire, Vinod
$3: 05-3: 55 \mathrm{pm}$		B07 Gaire, Vinod	B03 Tregoning, Brett		
$4: 05-4: 55 \mathrm{pm}$	A04 Walia, Saumya	B04 Gaire, Vinod	A09 Tregoning, Brett		
$5: 05-5: 55 \mathrm{pm}$	A08 Walia, Saumya				

Version Quiz \#1 Form \#211
Θ

Name:

Recitation Section: \qquad

- Print your name, quiz form number (3 digits at the top of this form), and student number (9 digit Georgia Tech ID number) in the section of the answer card labeled "Student Identification."
- Bubble the Quiz Form Number in columns 1-3, skip column 4, then bubble your Student Number in columns 5-13.
- Free-response questions are numbered I-III. For each, make no marks and leave no space on your card. Show all your work clearly, including all steps and logic. Box your answer.
- Multiple-choice questions are numbered 1-7. For each, select the answer most nearly correct, circle this answer on your quiz, and bubble it on your answer card. Do not put any extra marks on the card.
- Turn in your quiz and answer card as you leave. Your score will be posted when your quiz has been graded. Quiz grades become final when the next quiz is given.
- You may use a calculator that cannot store letters, but no other aids or electronic devices.
I. (16 points) The acceleration \vec{a} of a particle moving in one dimension is depends on time t and is given by

$$
\vec{a}=-\left(3.0 \mathrm{~m} / \mathrm{s}^{4}\right) t^{2}+\left(18.0 \mathrm{~m} / \mathrm{s}^{3}\right) t
$$

If the particle starts at position $x=2.0 \mathrm{~m}$ at $t=0$ with an initial velocity of $2.5 \mathrm{~m} / \mathrm{s}$, what is its displacement after 2.0 seconds? (Hint: first find the velocity.)
II. (16 points) Amber stands on top of a small building, and throws a rock straight downward. It strikes the ground 2.4 s after she releases it, traveling at $25 \mathrm{~m} / \mathrm{s}$. At what distance d above the ground did she release it? (On Earth.)

1. (6 points) In the problem above, if Amber had thrown the rock upward with the same initial speed...
(a) the rock would be traveling at greater than $25 \mathrm{~m} / \mathrm{s}$ when it reached the ground, and it would require more than 2.4 s to reach the ground from the time it was thrown.
(b) the rock would be traveling at greater than $25 \mathrm{~m} / \mathrm{s}$ when it reached the ground, and it would require less than 2.4 s to reach the ground from the time it was thrown.
(c) the rock would be traveling at $25 \mathrm{~m} / \mathrm{s}$ when it reached the ground, and it would require 2.4 s to reach the ground from the time it was thrown.
(d) the rock would be traveling at $25 \mathrm{~m} / \mathrm{s}$ when it reached the ground, but it would require less than 2.4 s to reach the ground from the time it was thrown.
(e) the rock would be traveling at $25 \mathrm{~m} / \mathrm{s}$ when it reached the ground, but it would require more than 2.4 s to reach the ground from the time it was thrown.
2. (6 points) The figure shows two coordinate systems, the original coordinate system (x, y), and $\left(x_{r}, y_{r}\right)$ which has been rotated by α degrees clockwise with respect to the original coordinate system. The vector \vec{A} has magnitude and angle $(r, \theta)=(A, \phi)$ in the original coordinate system.
What is the angle θ_{r} of polar coordinate $\left(r_{r}, \theta_{r}\right)$ of \vec{A} in the rotated coordinate system?
(a) $\theta_{r}=90-\phi$
(b) $\theta_{r}=90-(\alpha-\phi)$
(c) $\theta_{r}=\alpha+\phi$
(d) $\theta_{r}=\alpha-\phi$
(e) $\theta_{r}=90-\alpha$

III. (16 points) Write an expression for the Cartesian coordinates (x_{r}, y_{r}) of \vec{A} in the rotated coordinate system, in terms of parameters defined in the problem and physical or mathematical constants.
3. (8 points) I drop a stone from a tall tower at time $t=0$, then one second later I drop another stone. Which velocity vs. time diagram describes this situation. ("Up" is the positive direction.)
(a)

(b)

(c)

(d)

(e)

4. (8 points) Motion diagrams for two objects, i and $i i$, are shown. At an instant in what interval, if any, must the objects have the same velocity?
(a) In the interval from 1 to 2 .
(b) In the interval from 2 to 3 .
(c) There is no such instant in any time interval.
(d) In the interval from 3 to 4.
(e) In the interval from 4 to 5 .

5. (8 points) Motion diagrams for two objects, i and $i i$, are shown. At an instant in what interval, if any, must the objects have the same acceleration?
(a) In the interval from 2 to 3 .
(b) In the interval from 3 to 4.
(c) There is no such instant in any time interval.
(d) In the interval from 1 to 2 .
(e) In the interval from 4 to 5 .

6. (8 points) The graph shows the velocity of an object moving in one dimension as a function of time. At what time in the range 0 to 6 s does the object have its greatest displacement from its position at time $t=0 \mathrm{~s}$?
(a) About $t=2.3 \mathrm{~s}$, instant i iii.
(b) At $t=6 \mathrm{~s}$, instant v.
(c) At $t=4 \mathrm{~s}$, instant $i v$.
(d) About $t=0.7 \mathrm{~s}$, instant $i i$.
(e) At $t=0 \mathrm{~s}$, instant i.

7. (8 points) I am trying to land my plane due north at $5 \mathrm{~m} / \mathrm{s}$ in a $3 \mathrm{~m} / \mathrm{s}$ wind 30° north of east. If my target velocity is \vec{v}_{t}, and the wind has velocity \vec{v}_{w}, the velocity I should aim my plane, \vec{v}_{p}, satisfies $\vec{v}_{t}=\vec{v}_{w}+\vec{v}_{p}$. Which diagram of vector addition shows the correct vector along which I should aim my plane.
(a)

(b)

(c)

(d)

(e)

